Archaerhodopsin voltage imaging: synaptic calcium and BK channels stabilize action potential repolarization at the Drosophila neuromuscular junction.

نویسندگان

  • Kevin J Ford
  • Graeme W Davis
چکیده

The strength and dynamics of synaptic transmission are determined, in part, by the presynaptic action potential (AP) waveform at the nerve terminal. The ion channels that shape the synaptic AP waveform remain essentially unknown for all but a few large synapses amenable to electrophysiological interrogation. The Drosophila neuromuscular junction (NMJ) is a powerful system for studying synaptic biology, but it is not amenable to presynaptic electrophysiology. Here, we demonstrate that Archaerhodopsin can be used to quantitatively image AP waveforms at the Drosophila NMJ without disrupting baseline synaptic transmission or neuromuscular development. It is established that Shaker mutations cause a dramatic increase in neurotransmitter release, suggesting that Shaker is predominantly responsible for AP repolarization. Here we demonstrate that this effect is caused by a concomitant loss of both Shaker and slowpoke (slo) channel activity because of the low extracellular calcium concentrations (0.2-0.5 mM) used typically to assess synaptic transmission in Shaker. In contrast, at physiological extracellular calcium (1.5 mM), the role of Shaker during AP repolarization is limited. We then provide evidence that calcium influx through synaptic CaV2.1 channels and subsequent recruitment of Slo channel activity is important, in concert with Shaker, to ensure proper AP repolarization. Finally, we show that Slo assumes a dominant repolarizing role during repetitive nerve stimulation. During repetitive stimulation, Slo effectively compensates for Shaker channel inactivation, stabilizing AP repolarization and limiting neurotransmitter release. Thus, we have defined an essential role for Slo channels during synaptic AP repolarization and have revised our understanding of Shaker channels at this model synapse.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slowpoke Speeds Repolarization at Fly Synaptic Terminals

Voltage-sensitive K channels speed membrane repolarization, thus narrowing action potential (AP) waveforms. The spike waveform at synaptic terminals strongly influences the kinetics of neurotransmitter release. Because recording APs at synaptic terminals is difficult, however, researchers typically examine EPSPs to identify contributors to presynaptic waveform. For example, mutation of shaker, ...

متن کامل

Seeing Presynaptic Calcium Channels

The Drosophila gene cacophony (cac) encodes the 1 subunit of a presynaptic voltage-gated calcium channel. This gene locus was first identified, and named, because of a role in the male courtship song. These channels, activated during an action potential, trigger neurotransmitter release at the fly neuromuscular junction. To visualize their location in live animals, Kawasaki et al. created a tra...

متن کامل

Presynaptic DLG regulates synaptic function through the localization of voltage-activated Ca2+ Channels

The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic com...

متن کامل

Spontaneous miniature hyperpolarizations affect threshold for action potential generation in mudpuppy cardiac neurons.

Mudpuppy parasympathetic neurons exhibit spontaneous miniature hyperpolarizations (SMHs) that are generated by potassium currents, which are spontaneous miniature outward currents (SMOCs), flowing through clusters of large conductance voltage- and calcium (Ca(2+))-activated potassium (BK) channels. The underlying SMOCs are initiated by a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Perforate...

متن کامل

Analysis of repolarization of presynaptic motor terminals in Drosophila larvae using potassium-channel-blocking drugs and mutations.

In Drosophila melanogaster muscles and neuronal cell bodies at least four different potassium currents have been identified whose activity shapes the electrical properties of these cells. Potassium currents also control repolarization of presynaptic terminals and, therefore, exert a major effect on transmitter release and synaptic plasticity. However, because of the small size of presynaptic te...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 44  شماره 

صفحات  -

تاریخ انتشار 2014